Metastable ultracondensed hydrogenous materials
نویسندگان
چکیده
منابع مشابه
Electrochemical Stability of Metastable Materials
We present a first-principles-based formalism to provide a quantitative measure of the thermodynamic instability and propensity for electrochemical stabilization, passivation, or corrosion of metastable materials in aqueous media. We demonstrate that this formalism can assess the relative Gibbs free energy of candidate materials in aqueous media as well as their decomposition products, combinin...
متن کاملStability of α''-Fe16N2 in hydrogenous atmospheres.
We revealed the inherent instability of α''-Fe16N2 in hydrogenous atmospheres due to the denitrification toward α-Fe by forming NH3 at the particle surface. Coating the particle surface with SiO2 to suppress the formation of NH3 has proven to be a simple yet powerful method to enhance the stability of α''-Fe16N2 in hydrogenous atmospheres.
متن کاملClumps of hydrogenous planetoids as the dark matter of galaxies
Hydrodynamic gravitational condensation theory and quasar-microlensing observations lead to the conclusion that the baryonic mass of most galaxies is dominated by dense clumps of hydrogenous planetoids. Star microlensing collaborations fail to detect planetoids as the dominant dark matter component of the inner Galaxy halo (within ≈ 30 kpc) by an unjustified uniformnumber-density assumption tha...
متن کاملDesign amphiphilic dipolar π-systems for stimuli-responsive luminescent materials using metastable states.
π-Conjugated compounds that exhibit tunable luminescence in the solid state under external mechanical stimuli have potential applications in sensors and imaging devices. However, no rational designs have been proposed that impart these mechano-responsive luminescent properties to π-conjugated compounds. Here we demonstrate a strategy for mechano-responsive luminescent materials by imparting amp...
متن کاملIn situ studies of a platform for metastable inorganic crystal growth and materials discovery.
Rapid shifts in the energy, technological, and environmental demands of materials science call for focused and efficient expansion of the library of functional inorganic compounds. To achieve the requisite efficiency, we need a materials discovery and optimization paradigm that can rapidly reveal all possible compounds for a given reaction and composition space. Here we provide such a paradigm ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Condensed Matter
سال: 2017
ISSN: 0953-8984,1361-648X
DOI: 10.1088/1361-648x/aa98b4